ZnO nanobridge devices fabricated using carbonized photoresist

نویسنده

  • B. D. Pelatt
چکیده

Despite high interest for novel device applications, alignment and electrical integration of nanowires to lithographically defined features remains a challenge. In this work, ZnO nanowire devices were fabricated using a novel carbonized photoresist method in which photoresist is lithographically patterned, carbonized at elevated temperature, and then used to selectively seed growth of ZnO nanobridges between opposing carbonized photoresist electrodes. The pick and place method is avoided and selective growth of nanobridge structures is achieved without the use of metal catalysts or inorganic seed layers. Growth and electrical connection take place simultaneously. Electrical characterization of the electrical contact between the carbonized photoresist electrodes and the ZnO nanobridges is performed and operation of nanobridge devices as bottom gate three terminal field effect devices is demonstrated. 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directed integration of ZnO nanobridge sensors using photolithographically patterned carbonized photoresist.

A method for achieving large area integration of nanowires into electrically accessible device structures remains a major challenge. We have achieved directed growth and integration of ZnO nanobridge devices using photolithographically patterned carbonized photoresist and vapor transport. This carbonized photoresist method avoids the use of metal catalysts, seed layers, and pick and place proce...

متن کامل

Impact of Parylene-A Encapsulation on ZnO Nanobridge Sensors and Sensitivity Enhancement via Continuous Ultraviolet Illumination

Your article is protected by copyright and all rights are held exclusively by TMS. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. repository at a funder's request, provided it is not made publicly available until 12 months after publication. The impact of parylene-A encapsulation and the effect of continuous ultraviolet (UV) exposure on ZnO n...

متن کامل

Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method

We have recently reported fabrication of ZnO nanobridge devices using a single-step thermal evaporation method. In this fabrication process, e completely eliminated the need of either any metal catalysts or a ZnO seed layer to synthesize the ZnO nanobridges. As initially postulated, he morphology of an anisotropic crystalline substrate alone defines the growth region to prevent the random growt...

متن کامل

Selective Growth and Directed Integration of ZnO Nanobridge Devices on Si Substrates without a Metal Catalyst Using a ZnO Seed Layer

Directed assembly and integration of ZnO nanobridges (NBs) into working devices on Si substrates was achieved. Metal catalysts were not used, and the ‘‘harvest and disperse’’ method of nanorod (NR) integration was avoided. High-quality ZnO NRs were grown via a vapor–solid method selectively on a patterned thin-film ZnO seed layer. ZnO NRs exhibited a single-crystalline structure with c-axis pre...

متن کامل

Fabrication of Polymeric Multimode Waveguides and Devices in SU-8 Photoresist Using Selective Polymerization

Large cross section multimode waveguides have been realized in SU-8 using selective polymerization. SU-8 is a negative photoresist, which has shown good optical properties and it is mechanically and chemically stable. The fabricated waveguides have very smooth sidewalls and exhibit low optical losses. The fabrication method is simple and potentially very cost effective. N x N and 1 x N multimod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010